## Paper / Subject Code: 80702 / Data Structures

# SYBSCIT Sem III Reg. Exam oct-2018

 $(2\frac{1}{2} \text{ hours})$ 

|                  | OF COMMES    |
|------------------|--------------|
| Total Marks: 75] | ( 04 AGM/m.) |
|                  |              |
| ssumptions made. | *WKS         |

| TAT   |    | 111   | ABW         | 4.         |     | representation of the second | Marine Street |
|-------|----|-------|-------------|------------|-----|------------------------------|---------------|
| V     | н. | 1 1 ) | $\Delta$ II | dilections | are | compu                        | COPY          |
| T 4 . | D  | 111   | TARK        | questions  | and | Compu                        | DULY.         |

- (2) Make suitable assumptions wherever necessary and state the assumptions made
- (3) Answers to the same question must be written together.
- (4) Numbers to the <u>right</u> indicate <u>marks</u>.
- (5) Draw neat labeled diagrams wherever necessary.
- (6) Use of Non-programmable calculators is allowed.

#### 1. Attempt <u>any three</u> of the following:

15

- a. List and explain the different asymptotic notations used in data structures.
- b. What are the different ways in which data structures are classified? Explain in detail:
- c. What do you mean by complexity of an algorithm? Explain its types.
- d. Write an algorithm for binary search in an array.
- e. What is sparse matrix? Explain different types of sparse matrix.
- f. Explain with the help of an example how to merge two sorted arrays.

## 2. Attempt <u>any three</u> of the following:

15

- a. Explain the structure and types of linked list.
- b. Write the algorithm for insertion of a node at the given position and deletion at the end in linked list.
- c. Write an algorithm to copy one linked list into another linked list.
- d. Write an algorithm to insert an element at the beginning and end of circular linked list.
- e. Write and explain an algorithm for inserting at the beginning in two way linked list.
- f. Explain the different categories of header linked list.

#### 3. Attempt any three of the following:

15

- a. Write the algorithm for push and pop operation of the stack.
- Write the algorithm for converting infix to postfix and convert the following expression to postfix notation using stack
  I=(6+2)\*5-8/4
- c. Write the algorithm for evaluating a postfix expression using stack and give an example.
- d. How insertion and deletion operations take place in a queue?
- e. Explain how queue can be represented using linked list and give the algorithm for insertion in it.
- f. How priority queues are represented in memory.

## 4. Attempt any three of the following:

15

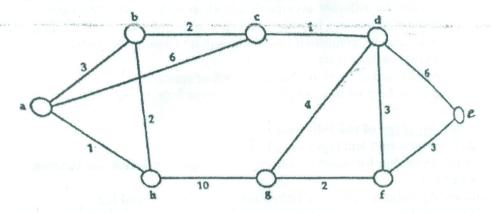
- a. Write an algorithm to find the minimum and maximum element in binary search tree.
- b. Create a heap for the given elements 15 7 10 2 20 15 18.
- c. Construct a binary tree from its inorder and postorder traversals. In-order: 5 10 12 15 18 20 25 30 35 40 50

Post-order: 5 12 18 15 10 25 35 50 40 30 20

d. Sort the following elements using selection sort.

22 35 17 8 13 44 5 28

[TURN OVER]


#### Paper / Subject Code: 80702 / Data Structures



- e. Write and explain the algorithm for finding a position of a given element and its parent in a binary search tree.
- f. Write the algorithm for inserting in a node in Red-Black tree.

5. Attempt any three of the following:

- 15
- a. What are the different ways to represent graphs in memory? Explain.
- b. Write and explain the algorithm for best first search in a graph.
- c. Using Prim's algorithm find the minimum spanning tree.



- d. Define the following terms.
  - 1. Graph.
  - 2. Weighted graph.
  - 3. Multi graph.
  - 4. Directed graph.
  - 5. Hamiltonian path.
- e. Explain any two collision resolution techniques.
- f. What are hash table and hash functions? Explain folding method and mic square method for constructing hash functions.