SYBSCIT Sem TII Reg & A. T.K. T. Etam UCt-2019. Class: S.Y.BSc IT Subject: Applied Mathematics [Time: 2\frac{1}{2} Hours] 14/10/19.

[Time: $2\frac{1}{2}$ Hours]

[Marks:75]

NOTE:

- > All questions are compulsory.
- > Figures to the right indicate marks.
- Use of calculator is allowed.

Q.1. Attempt any three from the following: [5X3=15]

- A. If A and B are symmetric matrices then show that AxB is symmetric if and only if AxB and BxA exist and if AxB=BxA.
- B. Reduce the matrix to normal form and find it's rank

where
$$A = \begin{bmatrix} 1 & -1 & 3 & 6 \\ 1 & 3 & -3 & -4 \\ 5 & 3 & 3 & 11 \end{bmatrix}$$

- C. Verify cayley-hamilton theorm for the matrix $A = \begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{bmatrix}$ D. Express (1+i)(2+3i)/(4-i) in the form $A = \begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{bmatrix}$
- D. Express (1+i)(2+3i)/(4-i) in the form of a+ib and also find it's amplitude and modulus.
- E. Simplify $(\cos 3x i\sin 3x)^{2/3}/(\cos 2x i\sin 2x)^{7/2}$
- F. Using De-Movie's theorem prove that $(1+i)^8 + (1-i)^8 = 32$.

Q.2. Attempt any three from the following:

[5X3=15]

- A. Solve $x \frac{dy}{dx} + y^2/x = y$.
- B. Solve $(-2x^2 + y) dx + (-x + x^{2y}) dy = 0$.
- C. Solve (p 2x)(p y) = 0.
- D. Solve: $d^3v/dx^3 3 d^2v/dx^2 + 3 dv/dx v = e^x + xe^x$.
- E. Solve: y = xp + 1/p.
- F. Solve: $(D + 4D)y = \sin 2x$.

Q.3. Attempt any three from the following: [5X3=15]

- A. Find Laplace transform of f(t) = t.
- B. State and prove convolution theorem of Laplace transform.
- C. Evaluate L[sin at].
- D. Find inverse Laplace transform of $1/(s^2 + 6s + 5)$.
- E. Find inverse Laplace transform, by using convolution theorem, $1/(s+1)(s^2+1)$.
- F. Find Laplace transform of: f(t)=1 when 0 < t < a and = -1 when a < t < 2a.

[5X3=15]

Q.4. Attempt any three from the following:

- A. Evaluate $\int_0^1 \int_0^y xy e^{-x^2} dx dy$.
- B. Change to polar $\int_0^{4a} \int_{\frac{y^2}{4a}}^{y} (x^2 y^2)/(x^2 + y^2) dy dx$.
- C. Evaluate $\int_{-1}^{1} dz \int_{0}^{z} dx \int_{x-z}^{x+z} (x+y+z) dy$.
- D. Evaluate $\iint xy(x+y)dx dy$ over the area between curve $y=x^2$ and line y=x.
- E. Calculate the volume of the solid bounded by the following surfaces: z=0, $x^2+y^2=1$, x+y+z=3
- F. Evaluate $\int_0^2 \int_0^x \int_0^{2x+2y} e^{(x+y+z)} dx dy dz$.

Q.5. Attempt any three from the following: [5X3=15]

- A. Prove that $beta(m,n) = {gamma(m) gamma(n)}/{(gamma(m+n))}$ relation between beta and gamma function.
- B. Prove that beta(1/4) beta(3/4) = pi.root(2).
- C. Evaluate $\int_1^{2a} x \sqrt{2ax x^2} dx$ in terms of beta function and find it's value.
- D. Find: d/dx [erf(x) + erfc(ax)].
- E. Prove that: $d/dx [erf(ax^n)] = (2an/\sqrt[p]{x^{n-1}} \cdot e^{-a^2x^{2n}}$.
- F. Verify the rule of differentiation under the integral sign for $\int_1^{a^2} tan^{-1}ax \ dx$. Evaluate the integral.
