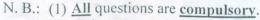
F.Y. BSC-IT - SEM I - Reg. Exam. Dec'2018

Paper / Subject Code: 82304 / Discrete Mathematics.

DE: - 4.11.18

(2½ Hours)

[Total Marks: 75]



- (2) Make suitable assumptions wherever necessary and state the assumptions made.
- (3) Answers to the same question must be written together.
- (4) Numbers to the right indicate marks.
- (5) Draw neat labeled diagrams wherever necessary.
- (6) Use of Non-programmable calculators is allowed.

1. Attempt any three of the following:

a. Define Universal Existential Statement and Existential Universal Statement. Give examples of each.

- b. Define Cartesian product. Let R denote the set of all real numbers. Describe R x R.
- c. Find the number of integers between 1 and 250 that are divisible by 2 or 3 or 5 or 7.
- d. Prove that $(A \cup B) \cap (A \cap B)' = (A B) \cup (B A)$
- e. Write the negation of each of the following statements as simply as possible:
 - i. If she works, she will earn money.
 - ii. He swims if and only if the water is warm.
 - iii. If it snows, then they do not drive the car.
 - iv. John is 6 feet tall and he weighs at least 120 Kg.
 - v. The train was late or Amol's watch was slow.
- f. Define the following:
 - i. Argument, Premises
 - ii. Syllogism
 - iii. Explain Modus Ponens and Modus Tollens with examples.

2. Attempt any three of the following:

a. Le

Q(n) be "n is a factor of 8," R(n) be "n is a factor of 4," S(n) be "n < 5 and $n \ne 3$,"

and suppose the domain of n is \mathbb{Z}^+ , the set of positive integers. Use the \Rightarrow and \Leftrightarrow symbols to indicate true relationships among Q(n), R(n), and S(n).

- b. Define *necessary and sufficient conditions* and *only if* as applied to universal conditional statements. Rewrite the following statements as formal and informal quantified conditional statements. Do not use the word necessary or sufficient.
 - i. Squareness is a sufficient condition for rectangularity.
 - ii. Being at least 35 years old is a necessary condition for being President of the United States.
- c. A college cafeteria line has four stations: salads, main courses, desserts, and beverages. The salad station offers a choice of green salad or fruit salad; the main course station offers spaghetti or fish; the dessert station offers pie or cake; and the beverage station offers milk, soda, or coffee. Three students, Uta, Tim, and Yuen, go through the line and make the following choices:

Uta: green salad, spaghetti, pie, milk

Tim: fruit salad, fish, pie, cake, milk, coffee

Yuen: spaghetti, fish, pie, soda

15

15

MUMBAL4

57811

- i. \exists an item I such that \forall students S, S chose I.
- ii. \exists a student S such that \forall items I, S chose I.
- iii. \exists a student S such that \forall stations Z, \exists an item I in Z such that S chose I.
- iv. \forall students S and \forall stations Z, \exists an item I in Z such that S chose I.
- Define a prime number and composite number. Give symbolic definitions of the same. d. Disprove the following by giving two counter examples:
 - For all real numbers a and b, if a < b then $a^2 < b^2$.
 - For all integers n, if n is odd then (n-1)/2 is odd. ii.
 - iii. For all integers m and n, if 2m + n is odd then m and n are both odd.
- Define divisibility. Hence prove that for all integers a, b, and c, if $a \mid b$ and $a \mid c$ then $a \mid (b + c) \text{ and } a \mid (b - c).$
- f. Use the quotient-remainder theorem with d = 3 to prove that the product of any three consecutive integers is divisible by 3. Use the mod notation to rewrite the result

15

- 3. Attempt any three of the following:
 - rite the following as a single summation:

$$3\sum_{k=1}^{n}(2k-3)+\sum_{k=1}^{n}(4-5k)$$

Write the following as a single product:

$$\left(\prod_{k=1}^{n} \frac{k}{k+1}\right) \cdot \left(\prod_{k=1}^{n} \frac{k+1}{k+2}\right)$$

- Find $1(1!!) + 2(2!!) + 3(3!) + \cdots + m(m!!); m = 2$ iii.
- iv.

a.

$$\left(\frac{1}{1+1}\right)\left(\frac{2}{2+1}\right)\left(\frac{3}{3+1}\right)\dots\left(\frac{k}{k+1}\right); k=3$$

Prove that for all nonnegative integers n and r with $r+1 \le n$,

$$\binom{n}{r+1} = \frac{n-r}{r+1} \binom{n}{r}$$

- Prove that $7^{2n} + (2^{3n-3})(3^{n-1})$ is divisible by 25 $\forall n \in \mathbb{N}$ b.
- Determine the sequence whose recurrence relation is $a_n = 4a_{n-1} + 5a_{n-2}$ with C.

$$a_1 = 2 \text{ and } a_2 = 6$$

d. Define $G: J_5 \times J_5 \to J_5 \times J_5$ as follows: For all $(a, b) \in J_5 \times J_5$, $G(a,b) = ((2a + 1) \mod 5, (3b - 2) \mod 5)$

Find: G(4,4), G(2,1), G(3,2), G(1,5)

Let F and G be functions from the set of all real numbers to itself. Define the ii. product functions $F \cdot G : \mathbb{R} \to \mathbb{R}$ and $G \cdot F : \mathbb{R} \to \mathbb{R}$ as follows: For all $x \in \mathbb{R}$,

$$(F \cdot G)(x) = F(x) \cdot G(x)$$
$$(G \cdot F)(x) = G(x) \cdot F(x)$$

$$(G \cdot F)(x) = G(x) \cdot F(x)$$

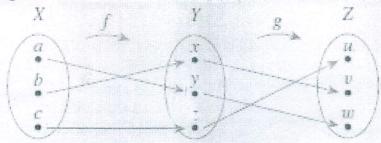
Does $F \cdot G = G \cdot F$? Explain.

15

- e.
- i. Define Floor: $R \to Z$ by the formula Floor(x) = [x], for all real numbers x.
- Is Floor one-to-one? Prove or give a counterexample.
- Is Floor onto? Prove or give a counterexample.
- ii. Let S be the set of all strings of 0's and 1's, and define $I: S \to \mathbb{Z}^{nonneg}$ by

l(s) = the length of s, for all strings s in S.

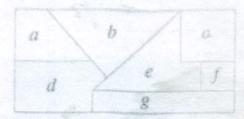
- Is *l* one-to-one? Prove or give a counterexample.
- Is *l* onto? Prove or give a counterexample.
- f. Let $X = \{a, c, b\}$, $Y = \{x, y, z\}$, and $Z = \{u, v, w\}$. Define $f: X \to Y$ and $g: Y \to Z$ by the arrow diagrams below.



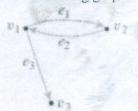
Find: $g \circ f$, $(g \circ f)^{-1}$, f^{-1} , g^{-1} , $f^{-1} \circ g^{-1}$. How $(g \circ f)^{-1}$ and $f^{-1} \circ g^{-1}$ are related?

- 4. Attempt <u>any three</u> of the following:
- a Draw the directed graph for the following relations:
 - i. A relation R on $A = \{0, 1, 2, 3\}$ by $R = \{(0, 0), (1, 2), (2, 2)\}$.
 - ii. Let $A = \{2, 3, 4, 5, 6, 7, 8\}$ and define a relation R on A as follows: For all $x, y \in A$, $x R y \Leftrightarrow x \mid y$.
- b Determine whether the following relations are reflexive, symmetric, transitive or none of these. Justify your answer.
 - i. R is the "greater than or equal to" relation on the set of real numbers: For all $x, y \in R$, $x R y \Leftrightarrow x \geq y$.
 - ii. D is the relation defined on R as follows: For all $x, y \in R, x D y \Leftrightarrow xy \ge 0$.
- Let **R** be the set of all real numbers and define a relation R on $\mathbf{R} \times \mathbf{R}$ as follows: For all (a, b) and (c, d) in $\mathbf{R} \times \mathbf{R}$, (a, b) R $(c, d) \Leftrightarrow$ either a < c or both a = c and $b \le d$. Is R a partial order relation? Prove or give a counterexample.
- Imagine that the diagram shown below is a map with countries labeled *a*–*g*. Is it possible to color the map with only three colors so that no two adjacent countries have the same color? To answer this question, draw and analyze a graph in which each country is represented by a vertex and two vertices are connected by an edge if, and only if, the countries share a common border.

57811



e i. Find the adjacency matrix of the following graph:



ii. Find directed graphs that have the following adjacency matrix:

 $\begin{bmatrix} 1 & 0 & 1 & 2 \\ 0 & 0 & 1 & 0 \\ 0 & 2 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$

15

- f For the following either draw the graph as per the specifications or explain why no such graph exists:
 - i. Graph, circuit-free, nine vertices, six edges
 - ii. Tree, six vertices, total degree 14
 - iii. Tree, five vertices, total degree 8
 - iv. Graph, connected, six vertices, five edges, has a nontrivial circuit
 - v. Graph, two vertices, one edge, not a tree

5. Attempt <u>any three</u> of the following:

- a. There are four bus lines between A and B and three bus lines between B and C. In how many ways can a man travel
 - i. by bus from A to C by way of B?
 - ii. round-trip by bus from A to C by way of B?
 - iii. round-trip by bus from A to C by way of B if he does not want to use a bus line more than once?
- b. i. How many ways can the letters of the word ALGORITHM be arranged in a row?
 - ii. How many ways can the letters of the word ALGORITHM be arranged in a row if A and L must remain together (in order) as a unit?
 - iii. How many ways can three of the letters of the word ALGORITHM be selected and written in a row?
 - iv. How many ways can six of the letters of the word ALGORITHM be selected and written in a row if the first letter must be A?
 - v. How many ways can the letters of the word ALGORITHM be arranged in a row if the letters GOR must remain together (in order) as a unit?

- c. i. If 4 cards are selected from a standard 52-card deck, must at least 2 be of the same suit? Why?
 - ii. If 5 cards are selected from a standard 52-card deck, must at least 2 be of the same suit? Why?

MUMBAI-49

- iii. A small town has only 500 residents. Must there be 2 residents who have the same birthday? Why?
- iv. Given any set of four integers, must there be two that have the same remainder when divided by 3? Why?
- v. Given any set of three integers, must there be two that have the same remainder when divided by 3? Why?
- d. i. How many distinguishable ways can the letters of the word *HULLABALOO* be arranged in order?
 - ii. How many distinguishable orderings of the letters of HULLABALOO begin with U and end with L?
 - iii. How many distinguishable orderings of the letters of HULLABALOO contain the two letters HU next to each other in order?
- e. A bakery produces six different kinds of pastry, one of which is eclairs. Assume there are at least 20 pastries of each kind.
 - i. How many d f rent selections of twenty pastries are there?
 - ii. How many different selections of twenty pastries are there if at least three must be eclairs?
 - iii. How many different selections of twenty pastries contain at most two eclairs?
- f. A drug-screening test is used in a large population of people of whom 4% actually use drugs. Suppose that the false positive rate is 3% and the false negative rate is 2%. Thus a person who uses drugs tests positive for them 98% of the time, and a person who does not use drugs tests negative for them 97% of the time.
 - i. What is the probability that a randomly chosen person who tests positive for drugs actually uses drugs?
 - ii. What is the probability that a randomly chosen person who tests negative for drugs does not use drugs?