F.Y. BSCITT - SEM I - Reg. Escarm - Dec'2018

Paper / Subject Code: 82302 / Digital Electronics.

DE: - 30.11.18

(2½ Hours)

MUMBAI-49 [Total Marks: 75]

- N. B.: (1) All questions are compulsory.
 - (2) Make suitable assumptions wherever necessary and state the assumptions made.
 - (3) Answers to the same question must be written together.
 - (4) Numbers to the right indicate marks.
 - (5) Draw neat labeled diagrams wherever necessary.
 - (6) Use of Non-programmable calculators is allowed.
- 1. Attempt any three of the following:

15

- Convert the following.
 - (i) $(1051.36)_{10} = (?)_8$
 - (ii) $(F9A.D5)_{16} = (?)_{10}$
- What is Hamming code? A seven bit even parity hamming code is received as 1110101. b. What is the correct code?
- Certain number system has base 7. What is the hexadecimal equivalent of the minimum C. and maximum number that is expressed using the base 7 and four bits?
- d. Solve the following.
 - (i) $(111000.01)_2 - (100111.00)_2$
 - $(1010101)_2 \div (11)_2$ (ii)
- Perform the following. e.
 - $(727)_8 + (234)_8$ (i)
 - (2C48)₁₆ (9AA)₁₆ using 1C method (ii)
- f. Solve the following.
 - (i) Convert the following number to BCD and add them $(11)_{10} + (9)_{10}$
 - Convert the following number to XS-3 and subtract them $(53)_{10} (28)_{10}$ (ii)
- 2. Attempt any three of the following:

15

- Reduce the following using Boolean laws and theorems.
 - $W\bar{X}(W+Y) + WY(\bar{W}+\bar{X})$
 - $XY + \bar{X}\bar{Y}Z + (\bar{X}\bar{Y} + Z)$ (ii)
- Write short notes on input bubbled AND gate and input bubbled OR gate. b.
- Prove the following. C.
 - (i) $\overline{ABC} + A\overline{BC} + AB\overline{C} + ABC = AB + AC + BC$
 - $(A + \bar{A}B)(C + \bar{D}) = \bar{A}\bar{B} + \bar{C}D$
- Simplify using K-map and realize it using minimum number of gates. d. $F(A,B,C,D,E) = \sum m(0,2,5,7,13,15,18,20,21,23,28,29,31)$
- Simplify using K-map and realize it using minimum number of gates. e. $F(A,B,C,D) = \prod M(4,6,8,9,10,12,13,14) + d(0,2,5)$
- Minimize expression using Quine Mc Cluskey method. f. $f(W,X,Y,Z)=\sum m(2,6,8,9,10,11,14,15)$
- 3. Attempt any three of the following:

15

- The input to a combinational logic circuit is a 4-bit binary number. Design the logic a. circuit with minimum hardware for the following
 - Output Y1 = 1 if the input binary number is 5 or less than 5.
 - Output Y2 = 0 if the input binary number is 9 or more than 9.
- Convert 4 bit gray to 4 bit binary. Draw the truth table, necessary k-maps and logic b. circuit.

57819

Paper / Subject Code: 82302 / Digital Electronics.

- c. Draw circuit and explain working of XS-3 adder.
- d. Design the Full Subtractor using K-map. Draw the circuit diagram for the same.
- e. How Booths algorithm speeds up the multiplication process? Explain with an example.
- f. Design single bit magnitude comparator. Draw truth table, K-map and circuit diagram for the same.

4. Attempt any three of the following:

15

- a. Implement full adder circuit using 8:1 MUX.
- b. Cascade Demultiplexer. Build 1:8 demux using 1:4 demux chips.
- c. $Y = A + B + \bar{C}$. Realize using a multiplexer.
- d. Draw logic circuit diagram of D flip flop and describe with a truth table the working of
- e. How SR flip-flop can be used to work as T flip-flop? Explain.
- f. How flip-flop is used in eliminating keyboard debouncing? Explain.

5. Attempt *any three* of the following:

15

- a. Design modulo 6 ripple counter.
- b. Design 4 bit binary up/down counter with control input of up/down.
- c. Implement synchronous counter using JK FF for state diagram shown in figure.

- d. Write a short note on buffer register.
- e. Explain working of SIPO register.
- f. Write a short note on Johnson counter.