F.Y.BMS - SEM I - Reg - Oct 2019

Class:	FYBMS (Sem: 1)	Subject: Business Mathematics					
[Time:	:2 1 Hours]	Busi-St	ats	[Marks:75]			
			·	4.10.19			
NOTE	E: i) All questions are	70					
		ooth the sub-parts A a	nd B.				
	iii) Figures to the rig						
		ammable calculator is	allowed.				
	v) Graph will be prov	vided on request.					
Q 1) A	A. Fill in the blan	nks with correct alter	native. (any Eig	(ht) [8]			
a.	The data which is coll						
	(Information, seconda		Man Man	41			
b.			he points by using	ng a smooth curve is called as			
		, ,	1				
	(Histogram, frequency	polygon, frequency co	irve)				
c.	The mid value of class						
	(median, decile, class						
d.	If the value of coeffici		e then the consis	tency of data is			
	(more, less, equal)						
e.	If coefficient of correl	ation between x and y	is less than 0 the	n there is			
	correlation.						
	(positive, negative, no	one)					
f.	An index depending t	he seasons is known as		index number.			
	(seasonal, price, fishe						
g.	A variable X capable	of taking discrete value	es x_1, x_2, x_3, \dots	, x_n with respective			
	probabilities p_1, p_2, p_3	$_3, \ldots, p_n$ is called as $_$	r	andom variable.			
	(discrete, continuous,	none of these)					
h.	For statistical experim	ent set of all possible of	outcome is know	n as			
	(sample space, sample	e, element)					
i.	EMV stands for						
	a) Equated Monetary	Value					
	b) Equal Money Val	ue					
	c) Equated Money V						
j.			subtracting	value of table from a			
	values of given pay-o	ff table.					
	(highest, lowest, none						
Q 1) I	B. State whether the fo						
a)		re which represents wh		n as range.			
b)		ted by vertical rectang					
c)		on is relative measure of					
d)		en upper and lower qua		as quartile deviation.			
e)		impossible event is one	e				
f)	Statistical gives an ac						
g)		ngement is called as pe	rmutation.				
h)	I anlace criterion is sa	me as tisher's index					

- i) Kelly's index number is square root of laspeyre's index number.
- i) EMV is monetary value.

Q 2) A.

i. Calculate third and seventh decile for the following data:

,	•	•	

Class	0-20	20-40	40-60	60-80	80-100	100-120
Frequency	6	2	4	10	12	8

ii. Draw the more than ogive curve and also locate median for the following marks distribution

Marks	5-10	10-15	15-20	20-25	25-30	30-35
No. of students	3	8	11	4	7	4

[OR]

Q 2) B.

i. Draw the Histogram and polygon for the following data:

[8]

		1 "	_				
Units		0-10	10-20	20-30	30-40	40-50	50-60
No. of	consumers	4	2	6	4	3	1

ii. Find the missing frequency if the mean is 21.9. And also find fifth decile.

[7]

I ma the mi	bbing nee	lacino, in the					L		7
Class	0-5	5-10	10-15	15-20	20-25	25-30	30-35	35-40	
Frequency	2	5		13	21	16	8	3	

Q3) A.

i. Calculate the mean deviation from mean and coefficient of M.D. for the following data:

[8]

Age	2-4	4-6	6-8	8-10	10-12	12-14	14-16
No. of	2	4	9	3	7	1	2
employees							

ii. Calculate spearman's coefficient of correlation for the following distribution:

[7]

 Carearate	Spearman .				0	
X	20	15	11	8	10	12
Y	10	40	20	25	35	22

[OR]

O 3) B.

i. Find regression equation of y on x for the following data and hence estimate y when x = 25

[8]

X	15	12	10	19	20	22
Y	19	17	14	27	29	31

ii. Calculate Karl Pearson's coefficient of correlation for the following data:

[7]

Calculate	ixaii i caisc	on a cocinic	icht of com	ciation for	die iono wii	5 data.
X	10	12	19	8	5	11
Y	15	18	21	10	6	17

Q4) A.

i. Fit a trend line by least square method and estimate the trend value for the year 2010.

[10]

								the second second second	
Year	1999	2000	2001	2002	2003	2004	2005	2006	2007
Export in Rs. Lakhs	8	10	12	11	13	15	14	17	17

ii. Calculate real income for the following data:

[5]

Year	2002	2003	2004	2005	2006
Prices	100	105	110	120	125
income Rs.	800	819	825	876	920

[OR]

Q4) B.

i. Calculate the Laspeyre's and Paasche's index number for the following data: [8]

Commodity	Base year	1996	Current year 2006	
	Price	Quantity	Price	Quantity
Wheat	6	20	7	25
Rice	4	22	10	26
Sugar	9	35	15	31
Oil	4	12	19	10

ii. Calculate 4 Yearly Moving Averages for the following data:

[7]

									L'.	1	
Year	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	
Sales	40	42	35	38	25	20	28	32	42	43	1

Q 5) A.

- i. A box contains 6 red, 4 blue and 9 green balls. 5 balls are selected at random from the box.
 Find the probability that i) at least 2 blue balls are selected (ii) at most 4 red balls are selected.
- ii. For the following pay-off table, find optimal decision using i) Hurwicz criterion (with $\alpha = 0.4$) (ii) Maximin criterion (iii) Maximax criterion (iv) Minimax Regret criterion.

[10]

Courses of	States of Nature			
Action	S1	S2	S3	
A1	10	16	9	
A2	8	10	18	
A3	9	12	20	

Q 5) B. Attempt any THREE from the following:

- i. Explain the primary data with its method of collection.
- ii. Explain probability with an example.
- iii. Write a short notes on family budget method.
- iv. Define for a random variable (i) Expectation (ii) Variance.
- v. Describe index number.

[15]