F.Y.BSC.IT-Sem I-A-T.K.T. Exam-Mar' 2023 Dt: 211/3/23

F.Y.B.Sc.(IT) SEM-I

DISCRETE MATHEMATICS

Total Marks:75

NOTE:

- (i) All the questions are compulsory.
- (ii) All the questions carry equal marks.
- (iii) Calculator is allowed.

Q-1 Attempt Any Three:

[15]

- [1] Of 21 typists in an office, 5 use all manual typewriters(M), electronic typewriters (E) and word processors(W); 9 use E and W; 7 use M and W; 6 use E and M; but no one uses M only. If the same number of typists use electronic as use word processors, then how many use word processor only?
- [2] Use mathematical induction to prove that $1 + 2 + 2^2 + \dots 2^n = 2^{n+1}$ -1 for all integers $n \ge 0$.
- [3] Do as directed:
- (i) Define Difference of a set.
- (ii) Let $U = \{1,2,3,...,10\}$, $X = \{1,2,3,4,5\}$, $Y = \{y/y = 2x, x \in X\}$, $Z = \{2,7\}$ Enumerate: $Y \cup Z$.
- (iii) Let $U = \{1,2,3,4,5\}$, $C = \{1,3\}$. Also, A and B are nonempty sets. $A \cup B = U$, $A \cap B = \emptyset$ and $B = \{1\}$. Find A.
- [4] $A = \{1,2,3,4\}$, $B = \{x, y, z\}$. Let R be a relation from set A to B given by, $R = \{(1, x), (2, z), (3, x), (3, y), (3, z)\}$ Find (a) R^{-1} (b) Domain and Range of R.
- [5] Define the cartesian product of sets. Let $A = \{1,2,3\}$ and $B = \{a, b\}$ find $A \times B \& B \times A$.
- [6] Let A = {1, 2, 3, 4, 6}. Let "R" be a relation on set A such that xRy iff "x completely divides y", Write R and from R write the matrix of R.

Q-2 Attempt Any Three:

[15]

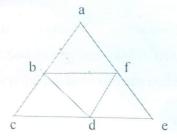
- [1] Let $X = \{a, b, c\}$ and $Y = \{1, 2, 3, 4\}$.
 - (i) Define a function $f: X \rightarrow Y$ by arrow diagram.
 - (ii) Find range of f.
 - (iii) Find the domain of f.
 - (iv) Find f(a), f(b) and f(c).
- [2] Let f: $R \to R$ be defined by $f(x) = x^3 + 5$. Show that f is one-to-one and onto.

- OU.S.C.C. OSMME
- [3] Let $f: R \to R$ be defined by f(x) = 3x 7. It is given that f is one -to- one and onto. Find a formula that defines the inverse function f^{-1} .
- [4] From a pack of a well shuffled 52 cards, four cards are drawn successively with replacement, find the probability that all 4 cards are spades?
- [5] There are 3 doctors, 4 engineers, 2 statisticians and 1 economist. A committee of 4 among them is to be formed. Find the probability that committee consists of at least one doctor.
- [6] Find the expected number of heads that can be obtained in a throw of two coins.

Q-3 Attempt Any Three:

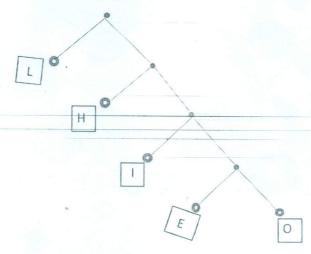
[15]

- [1] (i) There are 5 gentlemen and 4 ladies. In how many ways a group of 2 men and 2 ladies can be formed?
 - (ii)How many 4-digit numbers can be formed out of the digits 1,2,3,5,7,8,9 if no digit is Repeated in any number?
- [2] A box contains 7 red, 6 white and 4 blue balls. How many ways 3 balls can be selected so that (i) none is red (ii) one is of each colour.
- [3] If nCr = 56 and nPr = 336, find r and n.
- [4] Write Pigeon-Hole Principle. Show that in any set of 11 integers, there are at least two integers whose difference is divisible by 10.
- [5] Write Extended Pigeon-Hole Principle. Show that if there are 100 students in a class then at least there are four of them whose first name begins with the same alphabet.
- [6] Define Recurrence Relation. Find the first five terms of the following recursively defined sequence. $t_0 = -1$, $t_1 = 1$, $t_k = t_{k-1} + 2$. t_{k-2} , for all integers $k \ge 2$.


Q-4 Attempt Any Three:

[15]

- [1] Define:(i) Handshaking Theorem (ii) Degree of a vertex (iii) Complete graph [2]
 - (i) Determine the number of edges in a graph with 6 nodes, 2 of degree 4 and 4 of degree 2.
 - (ii)How many nodes are necessary to construct a graph with exactly 6 edges in which each is of degree 2?
- [3] Draw a connected regular graph of degree 0,1 and 2.
- [4] Let $V = \{1, 2, 3, 4\}$, $E = \{e_1, e_2, e_3, e_4, e_5, e_6\}$ and edges $e_1, e_2, e_3, e_4, e_5, e_6$ are associated with pair of vertices (1, 2), (4, 3), (1, 3), (2, 4), (1, 2), (1, 2), (3, 3) respectively. Represent the above information by drawing a graph G = (V, E).


- [5] In the following either draw a graph with specified...or explain why no such graph exists.
- (i) Graph with 5 vertices of degrees 1, 2, 3, 3 and 5.
- (ii) Graph with 4 vertices of degrees 1, 2, 3 and 3.
- [6] For the following graph find
- (i)Degree of each vertex and verify handshaking Theorem
- (ii) Write Adjacency matrix

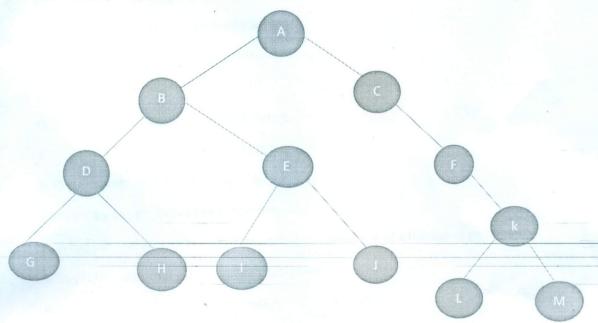
Q-5 Attempt Any Three:

[15]

[1] Consider the prefix code tree in the following figure:

Decode the following code strings. (a) 0111001111(b) 10111101110

- [2] The following statements are whether True or False:
- (i) If all the vertices of graph have even degree, then the graph is Eulerian.
- (ii)The outdegree of a vertex v in a directed graph is the number of edges ending or terminating at vertex v.
- (iii) A graph in which all vertices of equal degree is called complete graph.
- (iv) A vertex with degree one is called Pendant vertex.
- (v) Degree of any vertex of a simple graph with 'n' vertices cannot exceed (n-1).



[4]

[3] Considering the following table draw Code Tree and find which are the prefix codes.

Characters	Α	В	С	D	E
Code- 1	1	00	01	001	011
Code- 2	1	10	100	1000	-

- [4] Define the following:
 - (i) Binary Tree (ii) Height of a Tree (iii) Binary search Tree
- [5] For the tree find (i) List the children of each node(ii)List the siblings(iii)Find the depth of each node(iv)Find the level of each node.

[6]

- (i) Show that there does not exist a simple graph with 8 vertices and 29 edges.
- (ii) In a connected planar graph, there are 15 vertices, each of degree 2. Find the number of regions.

V	V	V	V
Λ			