FY	BSC.	IT
-	4	

Time: $2^{1}/_{2}$ hrs.

SEM-I (old ATKT) 11/02/2020 Applied Maths-I Marks:75 10.00-12:30

All questions are compulsory with internal choice.

Figure to the right indicates marks.

Use of calculator is allowed.

Q 1. Attempt any two from the following:

[5x2 = 10]

a) If the matrix A is is a skew hermitian matrix. Find iA and comment on your answer, where

$$A = \begin{bmatrix} 1 & 1 - 2i \\ -1 - 2i & 0 \end{bmatrix}.$$

- b) Show that inverse of unitary matrices is unitary.
- c) Reduce the following matrix to the normal form and also find its rank

$$A = \begin{bmatrix} 8 & 1 & 3 & 6 \\ 0 & 3 & 2 & 2 \\ -8 & -1 & 3 & 4 \end{bmatrix}$$

d) Find inverse of the following matrix by using adjoint method

$$A = \begin{bmatrix} 4 & 5 \\ 0 & 1 \end{bmatrix}.$$

Q 2. Attempt any two from the following:

[5x2 = 10]

- a) Check whether the vectors (2, 1, 4), (0, 7, 3) and (2, 1, 6) are linearly dependent. If so, find the relation between them.
- b) Find the solution of the following system of equation:

$$4x - 2y + 6z = 8$$
, $x + y - 3z = -1$, $15x - 3y + 9z = 21$.

- c) Find an inner product a.b and b.a where a = 3i 8j + 2k, b = i + 7j 2k.
- d) Find the eigenvalues of matrix A = $\begin{bmatrix} 8 & 4 \\ 3 & -2 \end{bmatrix}$.

Q 3. Attempt any two from the following:

[5x2 = 10]

- a) The position vector of a moving particle at a time t is $R=t^2i-t^3j+t^4k$. Find the tangential and normal components of its acceleration at t = 1.
- b) A particle moves on the curve $x = 2t^2$, $y = t^2 4t$, z = 3t 5, where t is the time. Find the velocity and acceleration at time t = 1.
- c) Find a unit vector normal to the surface $x^3 + y^3 + 3xyz = 3$ at the point (1, 2, -1).
- d) Find the volume of the parallelepiped whose edges are represented by the vectors A = -i + 2j 4k, B = -2i + 5j + k, C = 3i + j + 2k.

Q 4. Attempt any two from the following:

[5x2 = 10]

a) Solve
$$\frac{dy}{dx} = e^{2x-y}$$
.

b) Solve
$$(e^{y} + 1) \cos x \, dx + e^{y} \sin x \, dy = 0$$
.

c) Solve
$$(2x^3 + 3y) dx + (3x + y - 1) dy = 0$$

d) Solve
$$\frac{dy}{dx} = y$$
.

Q 5. Attempt any two from the following:

[5x2 = 10]

- a) If $y = ax + b\sqrt{x}$ then prove that $2x^2y_2 xy_1 + y = 0$.
- b) Solve $\frac{d^3y}{dx^3} 3\frac{d^2y}{dx^2} + 4y = 0$.
- c) Solve $(D^2 + 2D + 3)y = x x^2$.
- d) Solve $(D^2 + 4D + 4) y = x^2$.

Q 6. Attempt any two from the following:

[5x2 = 10]

- a) Verify Cauchy MVT for $f(x) = \sqrt{x}$ and $g(x) = \frac{1}{\sqrt{x}}$, in [a, b].
- b) Verify Roll's theorem for the function $f(x) = (x^2 1)(x 2)$ in [-1,2].
- c) Verify LMVT for f(x) = (x-1)(x-2)(x-3) in [0, 4].
- d) Verify Cauchy MVT for $f(x) = x^2$ and g(x) = x in [a, b].

Q 7. Attempt any three from the following:

[5x3 = 15]

- a) Find the eigen values of the matrix $A = \begin{bmatrix} -2 & 3 \\ 5 & -2 \end{bmatrix}$.
- b) Solve $\log \left(\frac{dy}{dx}\right) = ax + by$.
- c) If R = A sin ωt + B cos ωt , where A, B are constant vectors and ω is a scalar then show that R x $\frac{dR}{dt}$ = - ω (A x B).
- d) Solve (2x-y+1) dx + (2y-x-1) dy = 0.
- e) Verify LMVT for $f(x) = 2x^2 7x + 10$ in [2, 0].
- f) Evaluate curl $[e^{xyz}(I + J + K)]$.
