SYBSCIT Sem III Reg & A. T. K. T. E +am oct-2022

S.Y.B.Sc.(IT) SEM-III

APPLIED MATHEMATICS

Duration:2 hours & 30 Minutes

Total Marks:75

NOTE:

- (i) All the questions are compulsory.
- (ii) All the questions carry equal marks.
- (iii) Simple calculator is allowed.

Q-1 Attempt Any Three:

[15]

[1] Verify Cayley- Hamilton Theorem for the matrix A. Given that;

$$A = \begin{bmatrix} 1 & 2^* & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{bmatrix}; A^2 = \begin{bmatrix} -1 & 12 & -4 \\ -4 & 7 & 2 \\ 2 & -8 & 1 \end{bmatrix}; A^3 = \begin{bmatrix} -13 & 42 & -2 \\ -11 & 9 & 10 \\ -10 & -22 & -3 \end{bmatrix}$$

[2] Find Eigen Value of the matrix $A = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$

[3]P.T. the following matrix is orthogonal and hence find A⁻¹.

$$A = \frac{1}{3} \begin{bmatrix} -2 & 1 & 2 \\ 2 & 2 & 1 \\ 1 & -2 & 2 \end{bmatrix}$$

- [4] Find the Modulus and argument of: (a) 1+i (b) $1-\sqrt{3}i$
- [5] Write in the form of $r(\cos\theta + i\sin\theta)$: (i) $-1 + i\sqrt{3}$ (ii) $\sqrt{3} + i$
- [6] Do as directed:
 - (i) Write $\frac{3+2i}{2-3i}$ in standard form x + iy.
 - (ii) Write $e^{i\theta}$ in the polar form.
 - (iii)Write the De Moivre's Theorem.

Q-2 Attempt Any Three:

[15]

[1]Solve:
$$(x + 1) \frac{dy}{dx} = x(y^2 + 1)$$

[2] Solve:
$$(xy^2 + x)dx + (yx^2 + y)dy = 0$$

[3] Solve:
$$(5x^4 + 3x^2y^2 - 2xy^3)dx + (2x^3y - 3x^2y^2 - 5y^4)dy = 0$$

[4] Solve;
$$(y^2 - x^2)dx + 2xydy = 0$$

[5] Write the order and Degree of the following differential equations:

(i)
$$\frac{d^2y}{dx^2} + ax^3 = 0$$
 (ii) $x^2 \left(\frac{d^2y}{dx^2}\right)^2 + y \left(\frac{dy}{dx}\right)^3 + y^3 = 0$

[6] Solve:
$$(D^2 + 4)y = \cos 2x$$

[2]	
Q-3 Attempt Any Three:	[15]
[1]Find $L^{-1}\left[\frac{2}{s} + \frac{1}{s^2} + \frac{s}{s^2 - 9}\right]$	
[2] Find $L^{-1}\left(\frac{s}{s^2-16}\right)$	
[3] Find $L^{-1}\left[\frac{1}{s(s+a)}\right]$ by using convolution theorem.	
[4] Find $L[4t^2+\sin 5t+e^{3t}]$	
[5] Find $L[e^{-3t}\cos 4t]$	
[6] Find the Laplace/inverse Laplace transform of the following:	
1. L(1) 2. L [cos x] 3. L ⁻¹ $\left(\frac{1}{s^4}\right)$ 4. L ⁻¹ $\left(\frac{1}{s+2}\right)$ 5. L ⁻¹ $\left(\frac{1}{s^2+2}\right)$	
Q-4 Attempt Any Three:	[15]
[1] Evaluate: $\int_0^3 \int_0^1 (x^2 + 3y^2) dy dx$	
[2] $P.T. \int_1^a \int_1^b \frac{1}{xy} dy dx = (\log a)(\log b)$	
[3] Evaluate: $\int_{1}^{2} \int_{1}^{3} xy^{2} dxdy$	
[4] Evaluate: $\int_0^1 \int_0^2 \int_1^2 x^2 yz dz dy dx$	
[5] Evaluate: $\int_{-3}^{3} \int_{0}^{1} \int_{1}^{2} (x + y + z) dx dy dz$	
[6] Evaluate: $\int_0^1 \int_{y^2}^1 \int_0^{1-x} x dz dy dx$	
Q-5 Attempt Any Three:	[15]
[1] P.T. $\beta(m, n) = \beta(m, n + 1) + \beta(m, n + 1)$	
[2] Evaluate $\int_0^\infty t^{\frac{3}{2}} e^{-t} dt$	
[3] Evaluate: $\int_0^{\frac{\pi}{2}} \sin^4 \theta d\theta$	
[4] Evaluate $\int_0^1 x^{\frac{3}{2}} (1-x)^{-\frac{5}{2}} dt$	
[5] Evaluate $\int_0^{\frac{\pi}{2}} \sin^3 \theta \cos^8 \theta d\theta$	
[6] Evaluate: $\int_0^{\frac{\pi}{2}} \cos^3 \theta d\theta$	